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Abstract. This paper is devoted to the fundamental convergence theorem

on the mean-square order of numerical approximations for a class of back-

ward stochastic differential equations with terminal condition χ = ϕ(WT + x).
Our theorem shows that the mean-square order of convergence of a numerical

method depends on the order of the one-step approximation for the mean-

square deviation only. And some numerical schemes as examples are presented
to verify the theorem.

1. Introduction. The study of backward stochastic differential equations (BS-
DEs) is strongly motivated by numerous applications in finance and stochastic con-
trol theory [1, 4]. In 1990, E. Pardoux and S. Peng [6] proved the existence and
uniqueness of the solution of the general BSDEs. They also revealed the natural
connection between the backward stochastic differential equation and the parabolic
partial differential equation (PDE) [7].

As we know, few BSDEs can be analyzed exactly, even for the simple linear case.
To further investigate this type of equations, numerical methods are necessary. In
fact some efforts have been made on this topic. The studies on the important case
that the terminal condition is a function of WT , where Wt is a Brownian motion, are
as follows. A family of numerical schemes depending on two parameters θ1 and θ2

was proposed in [9] and the Lp-error estimation was considered in [2] when θ1 = 1
2

and θ2 = 1. [8] developed a scheme of Crank-Nicolson type and proved the second
order convergence in the strong L1- sense for both variables while [2] proved the
second order convergence of this scheme in the Lp-sense. Utilizing the variational
equation, [11] showed that for θ ∈ [0, 1] the strong order of θ-scheme is 1 for both
variables and also gave the strong order of the special case θ = 1

2 . The above papers
[2, 8, 9, 11] considered the case that the generator f = f(t, Y ), while [10] extended
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this to f = f(t, Y, Z). Following them, we consider the case where the terminal
condition is a function of WT with f = f(t, Y, Z) being the generator.

The mean-square order is an important convergence index for numerical methods
of stochastic system. In the numerical analysis of stochastic ordinary differential
equations (SODEs), [5] presents a fundamental convergence theorem which estab-
lishes the mean-square order of convergence of a method resting on properties of
its one-step approximation only. This fundamental theorem is the most important
criterion to evaluate the mean-square order of convergence for numerical approxima-
tions of SODEs. However, to the best of our knowledge, there are no such theorem
in the numerical analysis of BSDEs, even the terminal condition is reduced to a
function of WT . Hence motivated by Milstein’s work, we propose a fundamental
convergence theorem on the mean-square orders of numerical approximations for a
class of BSDEs with terminal condition χ = ϕ(WT +x) in this paper. The theorem
shows that the mean-square order of convergence of a numerical method depends
on the property of mean-square deviation of one-step approximation only. As we
all know, the solution of a BSDE is a pair of stochastic processes. The main diffi-
cult problem lies in the estimation of the martingale integrand Zt. By utilizing the
variational equation of the BSDE, this problem is solved in this paper.

The rest of the paper is organized as follows. In section 2 we present some prelim-
inaries including basic assumptions and properties of the BSDE and its variational
equation. In section 3 we prove the fundamental convergence theorem on the mean-
square order of convergence for general numerical methods. Section 4 presents some
specific numerical methods to verify the efficiency of the fundamental convergence
theorem and finally conclusions are made in section 5.

2. Preliminaries. The general form of the BSDE is

dY (t) = f(t, Y (t), Z(t)))dt+ Z(t)dWt, 0 ≤ t ≤ T,
(1)

Y (T ) = χ,

where W = (W 1, · · · ,W d)T is a standard d-dimensional Brownian motion defined
on a complete probability space (Ω,F , P ), with {Ft, t ∈ [0, T ]} being its natural
normal filtration, χ ∈ L2(Ω) is a FT -measurable random variable, and f : [0, T ] ×
R × Rd 7−→ R is a Lipschitz function and assumed to be B([0, T ]) ⊗ B ⊗ Bd/B
measurable. The unknowns are a pair of (Ft)-adapted processes Y (t) and Z(t),
whose existence and uniqueness are shown in [6]. In this paper, Y (t) and Z(t) are
said to be the first and second processes of equation (1), respectively.

Following [2, 8, 9, 10, 11], we focus on the case where there exists a Borel mea-
surable function ϕ : Rd 7−→ R such that χ = ϕ(WT + x) with x ∈ Rd being
deterministic in this paper.

2.1. Basic assumptions and notations. In this paper, we make the following
assumptions:

(i) ϕ(x) ∈ C3
b , where Ckb is the set of continuously differentiable functions φ(x)

such that the derivatives ∂lφ
∂xl exist and are uniformly bounded for 1 ≤ l ≤ k.

(ii) f(t, y, z) ∈ C1,2,2
b , where C

k/2,k,k
b is the set of continuously differentiable func-

tions φ(t, y, z) such that the partial derivatives ∂l0t ∂
l1
y ∂

l2
z φ(t, y, z) exist and are

uniformly bounded for 2l0 + l1 + l2 ≤ k.

Since it is natural to use some sufficiently broad assumptions which allow us
to analyze the numerical approximations conveniently, we do not assert that these
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assumptions are the optimal ones for our analysis, but they are sufficient. However,
investigations of the optimal assumptions are beyond the scope of the paper.

We also make the following notations in sequels.

• |x| is the Euclide norm of the vector or matrix x.

• For f(t, y, z) : [0, T ] × R × Rd, denote the vector
(
∂f
∂z1

, · · · , ∂f∂zd
)T

of partial

derivatives with respect to each component of z by ∂f
∂z ; ∂2f

∂y∂z and ∂2f
∂z2 mean

the vector
(

∂2f
∂y∂z1

, · · · , ∂f
∂y∂zd

)T
and the matrix

(
∂2f
∂z2

)
, respectively.

• Yt+h,ξ(t) is the process Y(t) under the condition Y (t+ h) = ξ.
• ∆Wtk+1

= Wtk+1
−Wtk .

2.2. Properties of the BSDE and its variational equation. If χ = ϕ(WT +x),
then the solution of BSDE (1) relates to a quasilinear parabolic PDE

∂u

∂t
+

1

2

d∑
i=1

∂2u

∂x2
i

− f(t, u,∇xu) = 0 (2)

with ∇xu = ( ∂u∂x1
, · · · , ∂u∂xd

)T and the terminal condition u(T, x) = ϕ(x), see for

instance [7] or [11]. By Itô formula, we have the following theorem.

Theorem 2.1. Let u(t, x) be the solution of the equation (2), Yt = u(t,Wt+x), Zt =
∇Yt = ∇xu(t,Wt + x) and ∇Zt = ∇2

xu(t,Wt + x). Under the above assumptions
(i) and (ii), we have the following relationships

dYt = f(t, Yt, Zt)dt+ ZtdWt, t ∈ [0, T ],
(3)

YT = ϕ(WT + x),

and

d∇Yt = F (t, Yt, Zt,∇Yt,∇Zt)dt+∇ZtdWt, t ∈ [0, T ],
(4)

∇YT =
∂

∂x
ϕ(WT + x),

where F (t, Yt, Zt,∇Yt,∇Zt) = ∇Yt ∂∂yf(t, Yt, Zt)+∇Zt ∂∂z f(t, Yt, Zt) and the partial

derivatives refer to f = f(t, y, z).

Proof. Assume d = 1 without loss of generality.
It follows from Itô formula that

dYt = du(t,Wt + x)

=
∂u

∂t
(t,Wt + x)dt+

∂u

∂x
(t,Wt + x)dWt +

1

2

∂2u

∂x2
(t,Wt + x)dt

= f(t, u(t,Wt + x),
∂

∂x
u(t,Wt + x))dt+

∂

∂x
u(t,Wt + x)dWt

= f(t, Yt, Zt)dt+ ZtdWt.
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Similarly,

dZt = d(
∂u

∂x
(t,Wt + x))

=
∂2u

∂t∂x
(t,Wt + x)dt+

∂2u

∂x2
(t,Wt + x)dWt +

1

2

∂3u

∂x3
(t,Wt + x)dt

=
∂

∂x

(∂u
∂t

(t,Wt + x) +
1

2

∂2u

∂x2
(t,Wt + x)

)
dt+

∂2u

∂x2
(t,Wt + x)dWt

=
(
∇Yt

∂

∂y
f(t, Yt, Zt) +∇Zt

∂

∂z
f(t, Yt, Zt)

)
dt+∇ZtdWt

= F (t, Yt, Zt,∇Yt,∇Zt)dt+∇ZtdWt.

This completes the proof.

Remark 1. We denote ∇Yt (resp. ∇Zt) as the variation of Yt (resp. Zt) with
respect to x. Analogously, ∇Ȳk (resp. ∇Z̄k) means variation of the numerical
solution Yk (resp. Zk) with respect to x in the following.

Remark 2. The equation (4) is called the variational equation of (3). As stated be-
fore, when one analyzes the convergence order of a numerical method to the BSDE,
the difficulty usually lies in the estimation of the second process Zt. Here we solve
this problem by utilizing the variational equation (4), especially, the relationship
∇Yt = Zt.

Next we present the property of the boundedness of solutions for the BSDE (3)
and its variational equation (4) under assumptions (i) and (ii), which can be derived
from the regularity of the solution u(t, x) for the PDE (2), too. However, the proof
here is from the pointview of BSDEs instead of PDEs; see [3] for the boundedness
of Yt in the case of f = f(t, Y ).

Throughout this paper, all constants K depend only on T , the coefficients of the
equation and its numerical approximation, which may be different from line to line.

Proposition 1. Under assumptions (i) and (ii) above, the solutions Yt, Zt and
∇Zt of the equations (3) and (4) are uniformly bounded by some positive constant
K a.s..

Proof. We define an approximating sequence by a kind of Picard iteration. Let

Z0
t ≡ 0, and {Y (n)

t , Z
(n)
t , 0 ≤ t ≤ T}n≥1 be defined recursively by

Y
(n)
t = ϕ(WT + x)−

∫ T

t

f(s, Y (n)
s , Z(n−1)

s )ds−
∫ T

t

Z(n)
s dWs. (5)

Note that from equation (5) we have

Y
(n)
t = Et

[
ϕ(WT + x)−

∫ T

t

f(s, Y (n)
s , Z(n−1)

s )ds
]
,

where Et(·) = E(·|Ft) is the conditional expectation with respect to Ft.
Then

|Y (n)
t | ≤ Et

[
|ϕ(WT + x)|+

∫ T

t

|f(s, Y (n)
s , Z(n−1)

s )|ds
]
.

Since the coefficients ϕ and f are bounded, we see that Y nt ,∀n is bounded by a
fixed constant depending on T and the bounds of the coefficients.
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Next by inductive approach we will prove that for each n there exists a finite

constant Mn depending on n such that |Z(n)
t | and |∇Z(n)

t | are uniformly bounded
by Mn.

Suppose that |Z(n−1)
t | and |∇Z(n−1)

t | are uniformly bounded by Mn−1. Obvi-
ously, this is true for n = 1.

The corresponding variational equation of (5) is

Z
(n)
t =

∂

∂x
ϕ(WT + x)−

∫ T

t

F (s)ds−
∫ T

t

∇Z(n)
s dWs, (6)

where F (s) = Z
(n)
s

∂
∂yf(s, Y

(n)
s , Z

(n−1)
s ) +∇Z(n−1)

s
∂
∂z f(s, Y

(n)
s , Z

(n−1)
s ).

For any nonnegative number A we consider the following BSDE

φA(Z
(n)
t ) =

∂

∂x
ϕ(WT + x)−

∫ T

t

FA(s)ds−
∫ T

t

∇Z(n)
s dWs, (7)

where FA(s) = φA(Z
(n)
t ) ∂∂yf(s, Y

(n)
s , φA(Z

(n−1)
t )) + ∇Z(n−1)

s
∂
∂z f(s, Y

(n)
s ,

φA(Z
(n−1)
t )) and φA is a truncation function such that φA(x) = x for |x| ≤ A,

and in the next we shall determine A.
Note that φA(Z

(n)
t ) also satisfies the following equation

φA(Z
(n)
t ) = Et

[ ∂
∂x
ϕ(WT + x)−

∫ T

t

FA(s)ds
]
.

Under the bounded condition of ∂f
∂y , ∂f∂z , ∇Z(n−1)

s and φA(Z
(n)
t ), we can derive the

boundedness of φA(Z
(n)
t ). However, the bound here depends on A and it’s not the

final bound that we need. So let hA(t) = |φA(Z
(n)
t )|∞ denotes the L∞(Ω)-norm of

φA(Z
(n)
t ). Then hA(t) satisfies the inequality

hA(t) ≤ K1 +K2

∫ T

t

hA(s)ds,

where K1 depends on the bounds of ∂ϕ∂x , ∂f∂z , ∇Z(n−1)
s and K2 depends on the bound

of ∂f
∂y , thus K1e

K2T < ∞. By Gronwall’s inequality, we know that there exists a

finite constant Mn such that

hA(t) ≤Mn.

Note that Mn does not depend on A; therefore if we choose A = Mn in (7), then

φA(Z
(n)
t ) actually is Z

(n)
t , which means

|Z(n)
t | ≤ hA(t) ≤Mn a.s.

Similarly, consider the corresponding variational equation of (6)

∇Z(n)
t =

∂2

∂x2
ϕ(WT + x)−

∫ T

t

G(s)ds−
∫ T

t

∇2Z(n)
s dWs,
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where

G(s)

=
∂2

∂y2
f(s, Y (n)

s , Z(n−1)
s )Z(n)

s (Z(n)
s )T + Z(n)

s

( ∂2

∂y∂z
f(s, Y (n)

s , Z(n−1)
s )

)T
∇Z(n−1)

s

+∇Z(n−1)
s

∂2

∂y∂z
f(s, Y (n)

s , Z(n−1)
s )(Z(n)

s )T +∇Z(n−1)
s

∂2

∂z2
f(s, Y (n)

s , Z(n−1)
s )∇Z(n−1)

s

+
∂

∂y
f(s, Y (n)

s , Z(n−1)
s )∇Z(n)

s +
( ∂
∂z
f(s, Y (n)

s , Z(n−1)
s )

)T
∇2Z(n−1)

s .

After the parallel procedure as the demonstration of Z
(n)
t , we can obtain the bound-

edness of ∇Z(n)
t .

By induction on n, we get that for all n ≥ 0, Y
(n)
t , Z

(n)
t and ∇Z(n)

t are bounded
by a constant Mn a.s..

Since Y
(n)
t , Z

(n)
t and ∇Z(n)

t converge to Yt, Zt and ∇Zt in L2(Ω) respectively;

see [6] for the proof of the L2 convergence, there exist subsequences Y
(nk)
t , Z

(nk)
t

and ∇Z(nk)
t converge to Yt, Zt and ∇Zt a.s., respectively.

For the fixed number ε = 1, there exists a natural number N such that |Xt −
X

(N)
t | ≤ 1, where X stands for Y or Z or ∇Z. Hence by triangle inequality, we

have
|Xt| ≤ |Xt −X(N)

t |+ |X(N)
t | ≤MN + 1 <∞.

Therefore the proof of this proposition is completed.

The proofs of the following proposition need that f(t, x, y) grows at most as a
linear function of x and y, i.e., there exists some positive constant K, such that

∀(t, x, y), |f(t, x, y)| ≤ K(1 + |x|+ |y|),
which follows from assumption (ii).

Proposition 2. Suppose that Y (t+ h) = ξ ∈ L2(Ω) is a Ft+h-measurable random
variable. Then the solution of the equation (3) satisfies the following inequality
(h < 1):

E|Y (t)|2 + E

∫ t+h

t

|Z(s)|2 ds ≤ K(1 + E|ξ|2), 0 ≤ t ≤ T. (8)

Proof. By the Itô formula, we have

E|Y (t)|2 + E

∫ t+h

t

|Z(s)|2 ds = E|ξ|2 − 2E

∫ t+h

t

Y (s)f(s, Y (s), Z(s)) ds

≤ E|ξ|2 + 2E

∫ t+h

t

|Y (s)||f(s, Y (s), Z(s))|ds

≤ E|ξ|2 + 2KE

∫ t+h

t

|Y (s)|[1 + |Y (s)|+ |Z(s)|] ds

≤ E|ξ|2 + h+ (2K + 3K2)E

∫ t+h

t

|Y (s)|2 ds+
1

2
E

∫ t+h

t

|Z(s)|2 ds,

where the last inequality follows from the fact ab ≤ 1
2 (a2 + b2). Immediately, this

leads to the following inequality

E|Y (t)|2 +
1

2
E

∫ t+h

t

|Z(s)|2 ds ≤ E|ξ|2 + 1 +KE

∫ t+h

t

|Y (s)|2 ds.
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Then (8) is nothing other than Gronwall’s lemma. This completes the proof.

Proposition 3. Under the same assumption of Proposition 2, we have

E|Yt+h,ξ(t)− ξ|2 ≤ K(1 + E|ξ|2)h.

Proof. From the equation (3), we have

E|Yt+h,ξ(t)− ξ|2 = E|
∫ t+h

t

f(s, Y (s), Z(s))ds+

∫ t+h

t

Z(s)dW (s)|2

≤ 2hE

∫ t+h

t

f(s, Y (s), Z(s))2ds+ 2E

∫ t+h

t

|Z(s)|2ds

≤ KhE
∫ t+h

t

(1 + |Y (s)|2 + |Z(s)|2)ds+ 2E

∫ t+h

t

|Z(s)|2ds

≤ Kh2 +KhE

∫ t+h

t

|Y (s)|2ds+KE

∫ t+h

t

|Z(s)|2ds

≤ Kh(1 + E|ξ|2),

where the last inequality follows from the boundedness of |Z(s)| and Proposition 2.
Therefore the proof is completed.

Proposition 4. Under the same assumption as Proposition 2, we have the following
estimation

|E(Yt+h,ξ(t))(Yt+h,ξ(t)− ξ)| ≤ K(1 + E|ξ|2)h.

Proof. From the equation (3), we have

|E(Yt+h,ξ(t))(Yt+h,ξ(t)− ξ)|

≤ E
(
|Yt+h,ξ(t)||

∫ t+h

t

f(s, Yt+h,ξ(s), Zt+h,ξ(s)) ds|
)

≤ (E|Yt+h,ξ(t)|2)1/2(E|
∫ t+h

t

f(s, Yt+h,ξ(s), Zt+h,ξ(s)) ds|2)1/2

≤ K(1 + E|ξ|2)h.

This completes the proof.

The similar properties of the solution of the variational equation (4) are also
needed for the analysis in Section 3.

By assumption (ii), we have

|F (t, Yt, Zt,∇Yt,∇Zt)| = |∇Yt
∂

∂y
f(t, Yt, Zt) +∇Zt

∂

∂z
f(t, Yt, Zt)|

≤ K(|∇Yt|+ |∇Zt|),

where K is the upper bounds of ∂f
∂y and ∂f

∂z , that is to say F (t, Yt, Zt,∇Yt,∇Zt)
grows at most as a linear function of ∇Yt and ∇Zt. Therefore the estimations
of ∇Y (t) and ∇Z(t) are similar to those of Y (t) and Z(t), here we just give the
conclusions without proofs.

Proposition 5. Suppose that (∇Y (t),∇Z(t)) is the solution of the variational equa-
tion (4) with ∇Y (t+ h) = η, then we have (h < 1)

E|∇Y (t)|2 + E

∫ t+h

t

|∇Z(s)|2ds ≤ K(1 + E|η|2).
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Proposition 6. Under the same assumption of Proposition 5, we have

E|∇Yt+h,η(t)− η|2 ≤ K(1 + E|η|2)h,

|E(∇Yt+h,η(t))T (∇Yt+h,η(t)− η)| ≤ K(1 + E|η|2)h.

3. Fundamental convergence theorem. Now we are in the position of the state-
ment and proof of the main result in this paper.

Firstly, we introduce the uniform partition 0 = t0 < · · · < tN = T , and let
h = tk+1 − tk, k = 0, · · · , N − 1 for simplicity. Denote the approximation of the
solution (Y (tk), Z(tk),Ftk) for BSDE (3) at time tk by (Ȳk, Z̄k,Ftk), which means
that the numerical approximation (Ȳk, Z̄k) is also Ftk -measurable. Define (Ȳk, Z̄k)
recurrently by

Ȳk = A(Ȳk+1, Z̄k+1, Ȳk, Z̄k, h),

Z̄k = B(Ȳk+1, Z̄k+1,∇Ȳk+1, Ȳk, Z̄k,∇Ȳk, h,W (tk+1)−W (tk)),
(9)

for some functions A and B such that Ȳk and Z̄k is Ftk -measurable. Here the
terminal value ȲN and Z̄N are two given random variables satisfying (E|ȲN −
Y (T )|2)1/2 ≤ Khp1 and (E|Z̄N −Z(T )|2)1/2 ≤ Khmin{p1,p2}, respectively, where p1

and p2 are positive numbers.

Remark 3. For the case that the terminal condition is Y (T ) = ϕ(WT + x), one
may choose ȲN = Y (T ) = ϕ(WT + x) and Z̄N = ∇Y (T ) = ∂

∂xϕ(WT + x).

Taking the generalized θ-method proposed in [10] for example,

Ȳk = Extk [Ȳk+1] + θ1hf(tk, Ȳk, Z̄k) + (1− θ1)hExtk [f(tk+1, Ȳk+1, Z̄k+1)],

θ3hZ̄k = θ4hE
x
tk

[Z̄k+1] + (θ3 − θ4)Extk [Ȳk+1∆WT
tk+1

]

+ (1− θ2)hExtk [f(tk+1, Ȳk+1, Z̄k+1)∆WT
tk+1

],

where θi ∈ [0, 1], i = 1, 2, θ3 ∈ (0, 1] and θ4 ∈ [−1, 1] constrained by |θ4| ≤ θ3.
Taking the variation on both sides of the scheme (9), we obtain (∇Ȳk,∇Z̄k),

which is the approximation of the solution (∇Y (tk),∇Z(tk)) of the variational equa-
tion (4). Also in sequels we make the following notations

Yk = Y (tk) = Ytk+1,Y (tk+1)(tk) = YtN ,YT
(tk),

Ȳk = Ȳtk+1,Ȳk+1
(tk) = ȲtN ,ȲN

(tk),

∇Yk = ∇Y (tk) = ∇Ytk+1,∇Y (tk+1)(tk) = Ztk+1,Y (tk+1)(tk) = Z(tk),

∇Ȳk = ∇Ȳtk+1,∇Ȳ (tk+1)(tk),

Z̄k = Z̄tk+1,Ȳk+1
(tk).

Next, we introduce a definition “closeness under variation”. Since the numerical
methods appearing in [2, 8, 9, 10, 11] are all closed under variation, we study the
fundamental convergence theorem for this class of numerical methods mainly in this
paper, while presenting the result for the rest of numerical methods without proof.

Definition 3.1. If a numerical method is closed under variation, then the numerical
result obtained from applying the method to the variational equation (4) is equal to
the variation of the numerical solution for equation (3), i.e. the following diagram
commutes:
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Figure 1. commutative diagram

3.1. Statement of the fundamental convergence theorem. For the numerical
approximations of the BSDE (3) which are closed under variation, the theorem on
the mean-square order is stated below.

Theorem 3.2. Suppose that the numerical method (9) for the BSDE (3) is closed
under variation and consistent with order p1 + 1 for the first process Y and order
p2 for the second one Z in the mean-square sense; more precisely, for arbitrary
0 ≤ t ≤ T − h, the following inequalities hold

(E|Yt+h,ξ(t)− Ȳt+h,ξ(t)|2)1/2 ≤ KC1h
p1+1, (10)

(E|Zt+h,ξ(t)− Z̄t+h,ξ(t)|2)1/2 ≤ KC2h
p2 , (11)

where C1 = (1 +E|ξ|2)1/2 and C2 = [(1 +E|ξ|2) + (1 +E|∇ξ|2)]1/2 and ξ ∈ L2(Ω)
is a Ft+h-measurable random variable.

Then for arbitrary N and k = 0, 1, · · · , N , the following inequalities hold

[E|Y (tk)− Ȳk|2]1/2 ≤ KC̄1h
p1 , (12)

[E|Z(tk)− Z̄k|2]1/2 ≤ KC̄2h
min{p1,p2}, (13)

where C̄1 = (1 + E|Y (T )|2)1/2 and C̄2 = [(1 + E|Y (T )|2) + (1 + E|∇Y (T )|2)]1/2.

Remark 4. The mean-square orders of convergence for the first and second pro-
cesses are p1 and min{p1, p2}, respectively, which will be denoted by (p1,min{p1, p2})
in the following.

Remark 5. The conditions (10) and (11) above are parallel to these in Milstein’s
convergence theorem [5]. Some numerical approximations as examples are presented
in Section 4 to verify Theorem 3.2.

Throughout the paper, ξ is the value of Y at time t+h, which may be Y (t+h) or
the approximation Ȳt+h. ∇ξ is the variation of ξ with respect to x and represents
the value of ∇Y at time t+ h. η and ∇η have the same meaning.

Since the numerical method is closed under variation, after applying the same
numerical method to the variational equation (4), we get (∇Ȳk,∇Z̄k). The order
of local error of ∇Ȳk is the same as that of Ȳk, i.e.,

(E|∇Yt+h,∇ξ(t)−∇Ȳt+h,∇ξ(t)|2)1/2 ≤ K(1 + E|∇ξ|2)1/2hp1+1. (14)
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In another case of the numerical method is not closed under variation, we assume
that the order of the local error of ∇Ȳk is p3 + 1, i.e.,

(E|∇Yt+h,∇ξ(t)−∇Ȳt+h,∇ξ(t)|2)1/2 ≤ K(1 + E|∇ξ|2)1/2hp3+1.

Similarly, we have

[E|Y (tk)− Ȳk|2]1/2 ≤ KC̄1h
p1 ,

[E|∇Y (tk)−∇Ȳk|2]1/2 ≤ KC̄2h
min{p1,p3},

[E|Z(tk)− Z̄k|2]1/2 ≤ KC̄2h
min{p1,p2,p3}.

which is presented here without proof, since its proof is similar to that of Theorem
3.2.

3.2. Lemmas. To prove the above fundamental convergence theorem, we need
some lemmas firstly.

From the assumption (ii), we know that f : Ω× [0, T ]×R×Rd 7−→ R is Lipschitz
with respect to x and y for some positive constant K, i.e., ∀(x1, y1), (x2, y2) ∈
R×Rd,

|f(t, x1, y1)− f(t, x2, y2)| ≤ K(|x1 − x2|+ |y1 − y2|).

This property is used in the proof of the following lemma.

Lemma 3.3. Suppose that ξ, η ∈ L2(Ω) are the potential values of Y at time t+h,
which are Ft+h-measurable. Then we have

E|Yt+h,ξ(t)− Yt+h,η(t)|2 ≤ E|ξ − η|2(1 +Kh).

Proof. As in Proposition 2, following from Itô formula, we obtain

E|Yt+h,ξ(t)− Yt+h,η(t)|2 +
1

2
E

∫ t+h

t

|Zt+h,ξ(s)− Zt+h,η(s)|2 ds

≤ E|ξ − η|2 +KE

∫ t+h

t

|Yt+h,ξ(s)− Yt+h,η(s)|2 ds.

By Gronwall’s lemma, one gets

E|Yt+h,ξ(t)− Yt+h,η(t)|2 ≤ E|ξ − η|2(1 +Kh).

Therefore the proof of this lemma is completed.

Lemma 3.4. For k = 0, 1, · · · , N , the following inequality holds

E|Ȳk|2 ≤ K(1 + E|Y (T )|2) = KC̄1.

Proof. First of all we need to prove the existence of E|Ȳk|2, k = 0, · · · , N. Suppose
that E|Ȳk+1|2 < ∞. Then, using the condition (10) in the statement of Theorem
3.2

E|Yt+h,Ȳk+1
(t)− Ȳt+h,Ȳk+1

(t)|2 ≤ K(1 + E|Ȳk+1|2)h2(p1+1),

and the conclusion of Proposition 2, the boundedness of E|Ȳk|2 is obvious. Since
E|ȲN |2 = E|Y (T )|2 < ∞, we have proved the existence of all E|Ȳk|2 < ∞, k =
0, · · · , N .



MEAN-SQUARE CONVERGENCE FOR BSDES 2061

Consider the equation

E|Ȳk|2 = E|Ȳk+1|2 + E|Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk)|2

+ E|Ytk+1,Ȳk+1
(tk)− Ȳk+1|2 + 2EȲk+1(Ytk+1,Ȳk+1

(tk)− Ȳk+1)

+ 2EȲk+1(Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk))

+ 2E(Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk))(Ytk+1,Ȳk+1
(tk)− Ȳk+1),

from Proposition 3, we have

E|Ytk+1,Ȳk+1
(tk)− Ȳk+1|2 ≤ K(1 + E|Ȳk+1|2)h.

Further, we obtain

2|E(Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk))(Ytk+1,Ȳk+1
(tk)− Ȳk+1)|

≤ 2(E|Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk)|2)1/2(E|Ytk+1,Ȳk+1
(tk)− Ȳk+1|2)1/2

≤ K(1 + E|Ȳk+1|2)hp1+ 3
2 .

Also from (10), we have

2EȲ Tk+1(Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk))

≤ K(E|Ȳk+1|2)1/2(E|Ȳtk+1,Ȳk+1
(tk)− Ytk+1,Ȳk+1

(tk)|2)1/2

≤ K(1 + E|Ȳk+1|2)hp1+1,

and following from Proposition 3 and Proposition 4, we have

2EȲ Tk+1(Ytk+1,Ȳk+1
(tk)− Ȳk+1)

= −2E|Ytk+1,Ȳk+1
(tk)− Ȳk+1|2 + 2EYtk+1,Ȳk+1

(tk)T (Ytk+1,Ȳk+1
(tk)− Ȳk+1)

≤ K(1 + E|Ȳk+1|2)h.

Therefore we arrive at the inequality

E|Ȳk|2 ≤ E|Ȳk+1|2 +K(1 + E|Ȳk+1|2)h ≤ (1 +Kh)E|Ȳk+1|2 +Kh.

Hence, we obtain

E|Ȳk|2 ≤ K(1 + E|Y (T )|2).

This completes the proof.

From the boundedness of Zt and ∇Zt, we know

|F (t, Y
(1)
t , Z

(1)
t ,∇Y (1)

t ,∇Z(1)
t )− F (t, Y

(2)
t , Z

(2)
t ,∇Y (2)

t ,∇Z(2)
t )|

≤ |∇Y (1)
t

∂

∂y
f(t, Y

(1)
t , Z

(1)
t )−∇Y (2)

t

∂

∂y
f(t, Y

(1)
t , Z

(1)
t )|

+ |∇Y (2)
t

∂

∂y
f(t, Y

(1)
t , Z

(1)
t )−∇Y (2)

t

∂

∂y
f(t, Y

(2)
t , Z

(2)
t )|

+ |∇Z(1)
t

∂

∂z
f(t, Y

(1)
t , Z

(1)
t )−∇Z(2)

t

∂

∂z
f(t, Y

(1)
t , Z

(1)
t )|

+ |∇Z(2)
t

∂

∂z
f(t, Y

(1)
t , Z

(1)
t )−∇Z(2)

t

∂

∂z
f(t, Y

(2)
t , Z

(2)
t )|

≤ K(|Y (1)
t − Y (2)

t |+ |Z
(1)
t − Z

(2)
t |+ |∇Y

(1)
t −∇Y (2)

t |+ |∇Z
(1)
t −∇Z

(2)
t |)

that is to say F (t, Yt, Zt,∇Yt,∇Zt) is Lipschitz with respect to Yt, Zt, ∇Yt and
∇Zt. So for the variational equation (4) and the variation of numerical method
∇Ȳk, we have the similar estimates.
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Lemma 3.5. For the variational equation we have

E|∇Yt+h,∇ξ(t)−∇Yt+h,∇η(t)|2 ≤ E|∇ξ −∇η|2(1 +Kh) +KE|ξ − η|2h.

Proof. Since

∇Yt+h,∇ξ(t)−∇Yt+h,∇η(t) = ∇ξ −∇η

−
∫ t+h

t

[F (s, Yt+h,ξ(s), Zt+h,ξ(s),∇Yt+h,∇ξ(s),∇Zt+h,∇ξ(s))

− F (s, Yt+h,η(s), Zt+h,η(s),∇Yt+h,∇η(s),∇Zt+h,∇η(s))]ds

+

∫ t+h

t

[∇Zt+h,∇ξ(s)−∇Zt+h,∇η(s)]dWs

and Itô formula, we have

E|∇Yt+h,∇ξ(t)−∇Yt+h,∇η(t)|2 + E

∫ t+h

t

|∇Zt+h,∇ξ(s)−∇Zt+h,∇η(s)|2ds

= E|∇ξ −∇η|2 − 2E

∫ t+h

t

(∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s))T (F1 − F2)ds

≤ E|∇ξ −∇η|2

+ 2KE

∫ t+h

t

|∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s)|(|Yt+h,ξ(s)− Yt+h,η(s)|

+ 2|∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s)|+ |∇Zt+h,∇ξ(s)−∇Zt+h,∇η(s)|)ds
≤ E|∇ξ −∇η|2

+ E

∫ t+h

t

(|Yt+h,ξ(s)− Yt+h,η(s)|2 +K|∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s)|2

+
1

2
|∇Zt+h,∇ξ(s)−∇Zt+h,∇η(s)|2)ds.

Therefore,

E|∇Yt+h,∇ξ(t)−∇Yt+h,∇η(t)|2 +
1

2
E

∫ t+h

t

|∇Zt+h,∇ξ(s)−∇Zt+h,∇η(s)|2ds

≤ E|∇ξ −∇η|2 + E

∫ t+h

t

|Yt+h,ξ(s)− Yt+h,η(s)|2ds

+KE

∫ t+h

t

|∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s)|2ds

≤ E|∇ξ −∇η|2 +KE|ξ − η|2h

+KE

∫ t+h

t

|∇Yt+h,∇ξ(s)−∇Yt+h,∇η(s)|2ds.

Obviously, by the Gronwall’s lemma, one gets

E|∇Yt+h,∇ξ(t)−∇Yt+h,∇η(t)|2 ≤ E|∇ξ −∇η|2(1 +Kh) +KE|ξ − η|2h.
The conclusion of this lemma is proved.

Lemma 3.6. For k = 0, 1, · · · , N , the following inequality holds

E|∇Ȳk|2 ≤ K(1 + E|∇Y (T )|2).

Proof. The proof is the same as that of Lemma 3.4.
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3.3. The proof of the fundamental convergence theorem.

Y (tk)− Ȳk = Ytk+1,Yk+1
(tk)− Ȳtk+1,Ȳk+1

(tk)

= [Ytk+1,Yk+1
(tk)− Ytk+1,Ȳk+1

(tk)]

+ [Ytk+1,Ȳk+1
(tk)− Ȳtk+1,Ȳk+1

(tk)]

Taking the mean-square of both sides of the above equation, we obtain

E|Y (tk)− Ȳ (tk)|2 = E|Ytk+1,Yk+1
(tk)− Ytk+1,Ȳk+1

(tk)|2

+ E|Ytk+1,Ȳk+1
(tk)− Ȳtk+1,Ȳk+1

(tk)|2

+ 2E[(Ytk+1,Yk+1
(tk)− Ytk+1,Ȳk+1

(tk))

(Ytk+1,Ȳk+1
(tk)− Ȳtk+1,Ȳk+1

(tk))].

(15)

By the conclusion of Lemma 3.3 we have

E|Ytk+1,Yk+1
(tk)− Ytk+1,Ȳk+1

(tk)|2 ≤ E|Yk+1 − Ȳk+1|2(1 +Kh), (16)

and by (10) and Lemma 3.4, we get

E|Ytk+1,Ȳk+1
(tk)− Ȳtk+1,Ȳk+1

(tk)|2 ≤ K(1 + E|Ȳk+1|2)h2p1+2

≤ K(1 + E|Y (T )|2)h2p1+2.
(17)

So the last summand in (15) is

2E[(Ytk+1,Yk+1
(tk)− Ytk+1,Ȳk+1

(tk))(Ytk+1,Ȳk+1
(tk)− Ȳtk+1,Ȳk+1

(tk))]

≤ K(E|Yk+1 − Ȳk+1|2)1/2(1 + E|Y (T )|2)1/2hp1+1

≤ KhE|Yk+1 − Ȳk+1|2 +K(1 + E|Y (T )|2)h2p1+1,

(18)

where the last inequality follows from the relationship ab ≤ 1
2 (a2 + b2).

Let (εkY )2 := E|Yk − Ȳk|2. The relations (15)-(18) lead to the inequality (h < 1)

(εkY )2 ≤ (εk+1
Y )2(1 +Kh) +K(1 + E|Y (T )|2)h2p1+2

+Kh(εk+1
Y )2 +K(1 + E|Y (T )|2)h2p1+1

≤ (εk+1
Y )2(1 +Kh) +K(1 + E|Y (T )|2)h2p1+1

Taking account of the fact that εNY ≤ Khp1 , we have

εkY ≤ K(1 + E|Y (T )|2)1/2hp1 = KC̄1h
p1 .

We can compute the global error of ∇Ȳk in parallel.

(εk∇Y )2 : = E|∇Y (tk)−∇Ȳk|2

= E|∇Ytk+1,∇Yk+1
(tk)−∇Ytk+1,∇Ȳk+1

(tk)|2

+ E|∇Ytk+1,∇Ȳk+1
(tk)−∇Ȳtk+1,∇Ȳk+1

(tk)|2

+ 2E[(∇Ytk+1,∇Yk+1
(tk)−∇Ytk+1,∇Ȳk+1

(tk))T

(∇Ytk+1,∇Ȳk+1
(tk)−∇Ȳtk+1,∇Ȳk+1

(tk))].

(19)

By the conclusion of Lemma 3.5, we have

E|∇Ytk+1,∇Yk+1
(tk)−∇Ytk+1,∇Ȳk+1

(tk)|2

≤ E|∇Yk+1 −∇Ȳk+1|2(1 +Kh) +KE|Yk+1 − Ȳk+1|2h
≤ E|∇Yk+1 −∇Ȳk+1|2(1 +Kh) +K(1 + E|Y (T )|2)h2p1+1,
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and by (14) and Lemma 3.6, we get

E|∇Ytk+1,∇Ȳk+1
(tk)−∇Ȳtk+1,∇Ȳk+1

(tk)|2 ≤ K(1 + E|∇Ȳk+1|2)h2p1+2

≤ K(1 + E|∇Y (T )|2)h2p1+2.

So the last summand in (19) is

2E(∇Ytk+1,∇Yk+1
(tk)−∇Ytk+1,∇Ȳk+1

(tk))T

(∇Ytk+1,∇Ȳk+1
(tk)−∇Ȳtk+1,∇Ȳk+1

(tk))

≤ K(E|∇Yk+1 −∇Ȳk+1|2(1 +Kh)

+K(1 + E|Y (T )|2)h2p1+1)1/2(1 + E|∇Y (T )|2)1/2hp1+1

≤ KE|∇Yk+1 −∇Ȳk+1|2h
+K(1 + E|Y (T )|2)h2p1+2 +K(1 + E|∇Y (T )|2)h2p1+1.

Therefore we obtain

εk∇Y ≤ KC̄2h
p1 .

At last,

(εkZ)2 : = E|Z(tk)− Z̄k|2 = E|Ztk+1,Yk+1
(tk)− Z̄tk+1,Ȳk+1

(tk)|2

≤ KE|Ztk+1,Yk+1
(tk)− Ztk+1,Ȳk+1

(tk)|2

+KE|Ztk+1,Ȳk+1
(tk)− Z̄tk+1,Ȳk+1

(tk)|2

= KE|∇Ytk+1,∇Yk+1
(tk)−∇Ytk+1,∇Ȳk+1

(tk)|2

+KE|Ztk+1,Ȳk+1
(tk)− Z̄tk+1,Ȳk+1

(tk)|2

≤ KE|∇Yk+1 −∇Ȳk+1|2(1 +Kh) +KE|Yk+1 − Ȳk+1|2h+KC̄2h2p2

≤ KC̄2
2h

2p1 +K(1 + E|Y (T )|2)h2p1+1 +KC̄2h2p2

≤ KC̄2
2h

min{2p1,2p2}.

So the proof of Theorem 3.2 is completed.

4. Examples. For equation

Yt = ϕ(WT + x) +

∫ T

t

f(s, Ys)ds−
∫ T

t

ZsdWs, (20)

consider the explicit Euler method of mean-square order (1, 1)

Ȳk = Etk(Ȳk+1) + hf(tk+1, Ȳk+1), ȲN = ϕ(WT ),

hZ̄k = Etk(Ȳk+1∆Wk+1).

First we check the closeness under variation of the method. The variational equation
of (20) is

∇Yt =
∂

∂x
ϕ(WT + x) +

∫ T

t

∇Ys
∂

∂y
f(s, Ys)ds−

∫ T

t

∇ZsdWs.

Applying the method to it, we get

∇Y k = Etk(∇Y k+1) + h∇Y k+1
∂

∂y
f(tk+1, Ȳk+1),

h∇Zk = Etk(∇Y k∆Wk+1).
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In another way, taking variation on both sides of the method, we have

∇Ȳk = Etk(∇Ȳk+1) + h∇Ȳk+1
∂

∂y
f(tk+1, Ȳk+1),

h∇Z̄k = Etk(∇Ȳk+1∆Wk+1).

Obviously, ∇Y k = ∇Ȳk and ∇Zk = ∇Z̄k, that is the method is closed under
variation. One have

|Ytk+1,ξ(tk)− Ȳtk+1,ξ(tk)| ≤
∫ tk+1

tk

Etk(|f(s, Ys)− f(tk+1, ξ)|)ds

≤ Kh2 +K

∫ tk+1

tk

Etk(|Ys − ξ|)ds

≤ K(1 + Etk(|ξ|2))1/2h2,

therefore,

E(|Ytk+1,ξ(tk)− Ȳtk+1,ξ(tk)|2) ≤ K(1 + E(|ξ|2))h4,

that is p1 = 1.
We can rewrite equation (20) as

hZtk = Etk(Ytk+1
∆Wk+1) +

∫ tk+1

tk

Etk(f(s, Ys)∆Ws)ds−
∫ tk+1

tk

Etk(Zs − Ztk)ds.

Then

h2|Ztk+1,ξ(tk)− Z̄tk+1,ξ(tk)|2

= |
∫ tk+1

tk

Etk(f(s, Ys)∆Ws)ds−
∫ tk+1

tk

Etk(Zs − Ztk)ds|2

≤ Kh
∫ tk+1

tk

(Etk((f(s, Ys)− f(tk, Ytk))∆Ws))
2ds

+Kh

∫ tk+1

tk

(Etk(Zs − Ztk))2ds

≤ K((1 + Etk(|ξ|2)) + (1 + Etk(|∇ξ|2)))h4

therefore we have

E(|Ztk+1,ξ(tk)− Z̄tk+1,ξ(tk)|2) ≤ KC2h2,

that is p2 = 1. The mean-square order (1,1) of the explicit Euler method is known
also from the convergence theorem 3.2.

The θ-scheme for equation (20) is considered in [11], which is also closed under
variation

Ȳk = Extk [Ȳk+1] + (1− θ)hExtk [f(tk+1, Ȳk+1)] + θhf(tk, Ȳk),

0 = Extk [Ȳk+1∆WT
tk+1

] + (1− θ)hExtk [f(tk+1, Ȳk+1)∆WT
tk+1

]

− {(1− θ)hExtk [Z̄k+1] + θhZ̄k},

They obtain that the mean-square orders of local error of this scheme are p1 =
2, p2 = 3, if θ = 1

2 . But the mean-square order of convergence is (2, 1). In their

Remark 3, they mentioned that for Z̄k, they only prove first-order convergence
theoretically, but their numerical experiments show that the convergence rate is
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higher than one. From our fundamental convergence theorem, we know the mean-
square order of convergence for Z̄k should be 2, which agrees with their numerical
experiments.

For the BSDE of the following form

Yt = ϕ(WT + x) +

∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdWs,

a family of numerical methods which is closed under variation is considered in [10],

Ȳk = Extk [Ȳk+1] + θ1hf(tk, Ȳk, Z̄k) + (1− θ1)hExtk [f(tk+1, Ȳk+1, Z̄k+1)],

θ3hZ̄k = θ4hE
x
tk

[Z̄k+1] + (θ3 − θ4)Extk [Ȳk+1∆WT
tk+1

]

+ (1− θ2)hExtk [f(tk+1, Ȳk+1, Z̄k+1)∆WT
tk+1

],

where θi ∈ [0, 1], i = 1, 2, θ3 ∈ (0, 1] and θ4 ∈ [−1, 1] constrained by |θ4| ≤ θ3.

If ϕ ∈ C3
b and f ∈ C1,3,3

b , one has that the mean-square orders of local error are
p1 = 1, p2 = 1; the mean-square order of convergence is (1, 1), the results accord

with our fundamental convergence theorem. If ϕ ∈ C2
b and f ∈ C

1
2 ,2,2

b , one has that
the mean-square orders of local error are p1 = 1

2 , p2 = 1
2 ; the mean-square order

of convergence is ( 1
2 ,

1
2 ), the results match our fundamental convergence theorem.

This indicates that the assumptions (i) and (ii) are sufficient.
If we check other schemes mentioned in [2, 8, 9, 10, 11], we will find that they

also coincide with the fundamental convergence theorem.

5. Conclusion. We consider an important class of BSDEs with final condition
χ = ϕ(WT + x) and propose the fundamental convergence theorem on the mean-
square order of numerical approximations for this class of BSDEs, which shows
that the mean-square order of convergence is (p1,min{p1, p2}), if the numerical
approximation is closed under variation, where p1 + 1 and p2 are mean-square
orders of the one-step approximation for the first and second processes of the BSDE,
respectively. The presented examples match our theoretical result. In our following
works, We will consider the case of a broader class of BSDEs where the terminal
condition is a function of a forward SDE.
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